16 research outputs found

    Measurement of the inclusive cross-section for the production of jets in association with a Z boson in proton-proton collisions at 8 TeV using the ATLAS detector

    Get PDF
    The inclusive cross-section for jet production in association with a Z boson decaying into an electron–positron pair is measured as a function of the transverse momentum and the absolute rapidity of jets using 19.9 fb −1 of s√=8 TeV proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider. The measured Z + jets cross-section is unfolded to the particle level. The cross-section is compared with state-of-the-art Standard Model calculations, including the next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations, corrected for non-perturbative and QED radiation effects. The results of the measurements cover final-state jets with transverse momenta up to 1 TeV, and show good agreement with fixed-order calculations

    Search for long-lived, massive particles in events with a displaced vertex and a muon with large impact parameter in pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    A search for long-lived particles decaying into hadrons and at least one muon is presented. The analysis selects events that pass a muon or missing-transverse-momentum trigger and contain a displaced muon track and a displaced vertex. The analyzed dataset of proton-proton collisions at √ s = 13 TeV was collected with the ATLAS detector and corresponds to 136 fb − 1. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particle decays that occur in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are presented as limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and interpreted as exclusion limits in scenarios with pair production of long-lived top squarks that decay via a small R -parity-violating coupling into a quark and a muon. Top squarks with masses up to 1.7 TeV are excluded for a lifetime of 0.1 ns, and masses below 1.3 TeV are excluded for lifetimes between 0.01 ns and 30 ns

    Measurement of the CP-violating phase ϕ<inf>s</inf> in Bs0→J/ψϕ decays in ATLAS at 13 TeV

    Get PDF
    A measurement of the Bs0→J/ψϕ decay parameters using 80.5fb-1 of integrated luminosity collected with the ATLAS detector from 13 Te proton–proton collisions at the LHC is presented. The measured parameters include the CP-violating phase ϕs, the width difference Δ Γ s between the Bs0 meson mass eigenstates and the average decay width Γ s. The values measured for the physical parameters are combined with those from 19.2fb-1 of 7 and 8 Te data, leading to the following: ϕs=-0.087±0.036(stat.)±0.021(syst.)radΔΓs=0.0657±0.0043(stat.)±0.0037(syst.)ps-1Γs=0.6703±0.0014(stat.)±0.0018(syst.)ps-1Results for ϕs and Δ Γ s are also presented as 68% confidence level contours in the ϕs–Δ Γ s plane. Furthermore the transversity amplitudes and corresponding strong phases are measured. ϕs and Δ Γ s measurements are in agreement with the Standard Model predictions

    Search for high-mass dilepton resonances using 139 fb(-1) of pp collision data collected at root s=13 TeV with the ATLAS detector

    No full text
    A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6TeV is presented. The data were recorded by the ATLAS experiment in proton-proton collisions at a centre-ofmass energy of root s = 13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb(-1). A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times branching ratio for various resonance width hypotheses. The derived limits are shown to be applicable to spin-0, spin-1 and spin-2 signal hypotheses. For a set of benchmark models, the limits are converted into lower limits on the resonance mass and reach 4.5 TeV for the E-6-motivated Z(psi)' boson. Also presented are limits on Heavy Vector Triplet model couplings. (C) 2019 The Author. Published by Elsevier B.V

    Measurement of the inclusive cross-section for the production of jets in association with a Z boson in proton-proton collisions at 8 TeV using the ATLAS detector

    No full text
    The inclusive cross-section for jet production in association with a Z boson decaying into an electronpositron pair is measured as a function of the transverse momentum and the absolute rapidity of jets using 19.9 fb(-1) of root s = 8 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The measured Z + jets cross-section is unfolded to the particle level. The cross-section is compared with state-of-the-art Standard Model calculations, including the next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations, corrected for non-perturbative and QED radiation effects. The results of the measurements cover final-state jets with transverse momenta up to 1 TeV, and show good agreement with fixed-order calculations

    Measurement of distributions sensitive to the underlying event in inclusive Z boson production in pp collisions at root s=13 TeV with the ATLAS detector

    No full text

    Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 2

    Get PDF
    The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas facility. The algorithm output consists of a pair of correction constants per chamber which are applied to baseline calibrations, and determined to be valid for the entire ATLAS Run 2. The final single-hit spatial resolution, averaged over 1172 monitored drift tube chambers, is 81.7 ± 2.2 Όm

    Search for long-lived, massive particles in events with a displaced vertex and a muon with large impact parameter in pppp collisions at s=13\sqrt{s} = 13 TeV with the ATLAS detector

    Get PDF
    A search for long-lived particles decaying into hadrons and at least one muon is presented. The analysis selects events that pass a muon or missing-transverse-momentum trigger and contain a displaced muon track and a displaced vertex. The analyzed dataset of proton-proton collisions at s=13\sqrt{s} = 13 TeV was collected with the ATLAS detector and corresponds to 136 fb−1^{-1}. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particle decays that occur in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are presented as limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and interpreted as exclusion limits in scenarios with pair-production of long-lived top squarks that decay via a small RR-parity-violating coupling into a quark and a muon. Top squarks with masses up to 1.7 TeV are excluded for a lifetime of 0.1 ns, and masses below 1.3 TeV are excluded for lifetimes between 0.01 ns and 30 ns

    Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at \sqrt{s} = 12 TeV with the ATLAS detector

    Get PDF
    The results of a search for electroweakino pair production pp The results of a search for electroweakino pair production pp \rightarrow \check{\chi}\frac{+}{1}\check{\chi}\frac{0}{2} in which the chargino (\check{\chi}\frac{+}{1}) decays into a W boson and the lightest neutralino \check{\chi}\frac{0}{1} are presented. The signal selection requires a pair of b-tagged jets consistent with those from a Higgs boson decay, and either an electron or a muon from the W boson decay, together with missing transverse momentum from the corresponding neutrino and the stable neutralinos. The analysis is based on data corresponding to 139 fb^{-1} of \sqrt{s} = 13 TeV pp collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. No statistically significant evidence of an excess of events above the Standard Model expectation is found. Limits are set on the direct production of the electroweakinos in simplified models, assuming pure wino cross-sections. Masses of \check{\chi}\frac{+}{1}\check{\chi}\frac{0}{2} up to 740 GeV are excluded at 95% confidence level for a massless \check{\chi}\frac{0}{1}

    Search for pair production of scalar leptoquarks decaying into first- or second-generation leptons and top quarks in proton–proton collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract: A search for pair production of scalar leptoquarks, each decaying into either an electron or a muon and a top quark, is presented. This is the first leptoquark search using ATLAS data to investigate top-philic cross-generational couplings that could provide explanations for recently observed anomalies in B meson decays. This analysis targets high leptoquark masses which cause the decay products of each resultant top quark to be contained within a single high-pT large-radius jet. The full Run 2 dataset is exploited, consisting of 139fb-1 of data collected from proton–proton collisions at s=13TeV from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. In the absence of any significant deviation from the background expectation, lower limits on the leptoquark masses are set at 1480GeV and 1470GeV for the electron and muon channel, respectively
    corecore